Snowpack Radiative Heating: Influence on Tibetan Plateau Climate

نویسندگان

  • Mark G. Flanner
  • Charles S. Zender
چکیده

Solar absorption decays exponentially with depth in snowpacks. However, most climate models constrain all snowpack absorption to occur uniformly in the top-most snow layer. We show that 20–45% of solar absorption by deep snowpacks occurs more than 2 cm beneath the surface. Accounting for vertically-resolved solar heating alters steady-state snow mass without changing bulk snow albedo, and ice-albedo feedback amplifies this effect. Verticallyresolved snowpack heating reduces winter snow mass on the Tibetan Plateau by 80% in one GCM, and significantly increases 2m air temperature. These changes significantly reduce model-measurement discrepancies. Our results demonstrate that snowpack radiative heating plays a significant role in regulating surface climate and hydrology. More accurate snowpack radiation has the potential to improve predictions of related climate processes, such as spring runoff and the Asian Monsoon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Premonsoon aerosol characterization and radiative effects over the IndoGangetic Plains: Implications for regional climate warming

[1] The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon o...

متن کامل

How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data

The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during premonsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and ...

متن کامل

Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia

The Tibetan Plateau is an important water source in Asia. As the "Third Pole" of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanis...

متن کامل

Orographic Controls on Climate and Paleoclimate of Asia: Thermal and Mechanical Roles for the Tibetan Plateau

Prevailing opinion assigns the Tibetan Plateau a crucial role in shaping Asian climate, primarily by heating of the atmosphere over Tibet during spring and summer. Accordingly, the growth of the plateau in geologic time should have written a signature on Asian paleoclimate. Recent work on Asian climate, however, challenges some (not all) of these views. The high Tibetan Plateau may affect the S...

متن کامل

Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative effect of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005